112=8x(x-7)-8x^

Simple and best practice solution for 112=8x(x-7)-8x^ equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 112=8x(x-7)-8x^ equation:



112=8x(x-7)-8x^
We move all terms to the left:
112-(8x(x-7)-8x^)=0
We calculate terms in parentheses: -(8x(x-7)-8x^), so:
8x(x-7)-8x^
We add all the numbers together, and all the variables
-8x+8x(x-7)
We multiply parentheses
8x^2-8x-56x
We add all the numbers together, and all the variables
8x^2-64x
Back to the equation:
-(8x^2-64x)
We get rid of parentheses
-8x^2+64x+112=0
a = -8; b = 64; c = +112;
Δ = b2-4ac
Δ = 642-4·(-8)·112
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{30}}{2*-8}=\frac{-64-16\sqrt{30}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{30}}{2*-8}=\frac{-64+16\sqrt{30}}{-16} $

See similar equations:

| Q=2p+10 | | 5x3=4x6 | | 12=7h+5 | | (9x-3)+(5x+5)+2(7x-15)=168 | | -r/0.8=-1.1 | | v-7.27=8.51 | | y+4.15=7.76 | | 13x+11=15x+5 | | 2.5/x=10 | | 4×-3=3×+6y | | x+2,5=10.2 | | 15+(15+5+2*2)+2=x | | x-2,5=10.2 | | x-2,5=10 | | 2x-7/4=x=3/3 | | 2m÷2.6=1.4 | | 15+(15+5+2)+2=x | | 5x+3x=248 | | (7x-8)(7x-8)=12 | | 5x+2=3x+13 | | y+y+15+15=20 | | 4⁷x=8 | | 53=3+8y | | 4(2+x)=11 | | 15-2p=7p-3 | | 12x-1=10x+9 | | 15x-8=8x+2 | | p^2-9p+36=0 | | 8x-3(5x+23)=23 | | x+x+2(15)=20 | | 5-5x-(10-6)=5 | | 64=5w+10 |

Equations solver categories